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Part 1/4:
Context
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Context: Problem

State of socket programming

● BSD-style sockets are very limited
○ 2-party communication
○ Limited configurability

● High-level logic → low-level implementation
○ Error prone for humans
○ Over-specifies original requirements
○ Original intention is lost

● Middleware is ignorant of the protocol
○ Uninformed resource optimization
○ Cannot help preserve requirements

protocol
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Context: Approach

Use explicit protocols as the vehicle for the user’s 
requirements, preserved all the way down to the 
infrastructure

Project deliverables:

1. Protocol Description Language (‘PDL’)
2. Implementation of connectors, configurable 

with protocols expressed in PDL

 

protocol
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Part 2/4:
Usage
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Usage: Connectors & Sessions

A session is a particular run of a system of 
communicating components, communicating via 
the exchange of messages over time.

C0 C1

C3C2
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Usage: Connectors & Sessions

A session is a particular run of a system of 
communicating components, communicating via 
the exchange of messages over time.

We discretize time into a sequence of interactions.
C0 C1

C3C2
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Usage: Connectors & Sessions

A session is a particular run of a system of 
communicating components, communicating via 
the exchange of messages over time.

We discretize time into a sequence of interactions.

Components act on ports (~channel ends), so we 
often reason at this granularity. Components only 
access their own ports.

C0 C1

C3C2
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Usage: Connectors & Sessions

Connectors allow an application to participate in a 
session, adopting the role of a native (component).

native

the session

connector
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Usage: Connectors & Sessions

Connectors allow an application to participate in a 
session, adopting the role of a native (component).

The session starts after a setup phase, in which the 
application refines the session configuration around 
their native component. 

native

the session

connector
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the session

Usage: Setup

Connectors allow an application to participate in a 
session, adopting the role of a native (component).

The session starts after a setup phase, in which the 
application refines the session configuration around 
their native component. They can:

1. Create channels, keeping both ports

native

connector

a
b
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the session

Usage: Setup

Connectors allow an application to participate in a 
session, adopting the role of a native (component).

The session starts after a setup phase, in which the 
application refines the session configuration around 
their native component. They can:

1. Create channels, keeping both ports
2. Cooperate with a peer to create a channel native

connector
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Usage: Setup

Connectors allow an application to participate in a 
session, adopting the role of a native (component).

The session starts after a setup phase, in which the 
application refines the session configuration around 
their native component. They can:

1. Create channels, keeping both ports
2. Cooperate with a peer to create a channel

All connectors transition setup→communication 
together, when they complete connect().

14/78
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Usage: Setup

Example C code of setup phase:

Connector * c = connector_new(config);

PortId x, y, z;
connector_add_port_pair(c, &x, &y);
connector_add_net_port(c, &z,
  (FfiSocketAddr) {{127, 0, 0, 1}, 7700},
  Polarity_Putter,
  EndpointPolarity_Active);

connector_connect(c, -1);

native

connector

y
zx

?

@127.0.0.1
:7700
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Usage: Communication

Communication proceeds in rounds (~interactions), 
during which every port may send or receive up to 1 
message. Components may work on local data 
`between’ rounds.

The C API renders this as a builder pattern, where 
the application synchronizes local data with that of 
the session in rounds. In steps:

1. Prepare for the next synchronization
2. Synchronize message data
3. Reflect on the result

connector_put_bytes(c, x, "Hi", 2);
connector_get(c, y);
connector_put_bytes(c, z, "Hey", 3);

connector_sync(c, -1);

size_t len;
const unsigned char * msg =
  connector_gotten_bytes(c, x, &len);
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Usage: Communication

Components can express nondeterministic
choice, to be decided arbitrarily at runtime.

For native components: group messages into 
indexed ‘batches’; exactly one batch will succeed.

connector_put_bytes(c, x, "Hey", 3);
connector_get(c, y);

connector_next_batch(c);

connector_put_bytes(c, x, "Hi", 2);

int code = connector_sync(c, -1);

switch(code) {
  case  0: /*              */ break;
  case  1: /*              */ break;
  default: /* (error case) */ break;
}

Batch
1

Batch
0
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Usage: Communication

Components can express nondeterministic
choice, to be decided arbitrarily at runtime.

For native components: group messages into 
indexed ‘batches’; exactly one batch will succeed.

Why? Component can be flexible to other 
components’ behavior without knowing it.

connector_put_bytes(c, x, "Hey", 3);
connector_get(c, y);

connector_next_batch(c);

connector_put_bytes(c, x, "Hi", 2);

int code = connector_sync(c, -1);

switch(code) {
  case  0: /*              */ break;
  case  1: /*              */ break;
  default: /* (error case) */ break;
}

Batch
1

Batch
0
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Usage: Communication

Example 1-round session

Connector * c = connector_new(config);
PortId p;
connector_add_net_port(c, &p, addr,
  Polarity_Putter, EndpointPolarity_Active);
connector_connect(c, -1);

connector_put_bytes(c, p, "Hi", 2);
connector_next_batch(c);
int err = connector_sync(c, 1000);
if(code == 1) {
  // my message was sent!
}

Connector * c = connector_new(config);
PortId g;
connector_add_net_port(c, &g, addr,
  Polarity_Getter, EndpointPolarity_Passive);
connector_connect(c, -1);

connector_get(c, g);
connector_sync(c, 1000);
size_t len;
const char msg = 
  connector_gotten_bytes(c, g, &len);
printf("%.*s\n", (int) len, msg);

19/78(this native offers the message: "Hi") (this native demands some message)



Usage: Protocols

Protocol Description Language (‘PDL’) defines 
protocol components, and aims to feel familiar to C 
programmers. primitive foo(in a, in b, out c) {

  int counter = 0;
}
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Usage: Protocols

Protocol Description Language (‘PDL’) defines 
protocol components, and aims to feel familiar to C 
programmers.

Primitive components can participate in rounds, 
putting or getting messages through ports.

primitive foo(in a, in b, out c) {
  int counter = 0;
  synchronous {
    msg ma = get(a);
  }
  synchronous {
    msg mb = get(b);
  }
}
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Usage: Protocols

Protocol Description Language (‘PDL’) defines 
protocol components, and aims to feel familiar to C 
programmers.

Primitive components can participate in rounds, 
putting or getting messages through ports.

Unlike natives, protocol components can introduce 
causal dependencies between actions.

primitive foo(in a, in b, out c) {
  int counter = 0;
  synchronous {
    msg ma = get(a);
  }
  synchronous {
    msg mb = get(b);
    put(c, mb);
  }
}
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Usage: Protocols

Protocol Description Language (‘PDL’) defines 
protocol components, and aims to feel familiar to C 
programmers.

Primitive components can participate in rounds, 
putting or getting messages through ports.

Unlike natives, protocol components can introduce 
causal dependencies between actions.

They can express nondeterminism by accessing 
values decided at runtime.

primitive foo(in a, in b, out c) {
  int counter = 0;
  synchronous {
    msg ma = get(a);
  }
  synchronous {
    if(fires(b) && fires(c)) {
      msg mb = get(b);
      put(c, mb);
    }
  }
}
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Usage: Protocols

Composite components can create new port pairs, 
but cannot communicate.

composite foo(in a) {
  channel b -> c;
}
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bar baz

Usage: Protocols

composite foo(in a) {
  channel b -> c;
  new bar(a, b);
  new baz(c);
}
primitive bar(in a, out b) {
  /* omitted */
} 
composite baz(in c) {
  /* omitted */
} 

Composite components can create new port pairs, 
but cannot communicate. They can also create new 
components, and pass them their ports.

foo
a

foo
c

a
b

before
after ?

?
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Usage: Connectors + Protocols

Like composites, natives can create new protocol 
components, effectively delegating work to the 
connector itself.

unsigned char pdl = "primitive foo(in g){}";
Arc_ProtocolDescription config = 
  protocol_description_parse(pdl, sizeof(pdl)-1);
Connector * c = connector_new(config);

PortId p, g;
connector_add_port_pair(c, &p, &g);
connector_add_component(c, "foo", 3, &g, 1);

connector_connect(c, -1);

foo

native

g
b

native

before
after

gb
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Usage: Session behavior

Connectors realize an interaction per round, where:

1. Components consense on the interaction
2. No component’s constraints are violated

27/78
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Usage: Session behavior

Connectors realize an interaction per round, where:

1. Components consense on the interaction
2. No component’s constraints are violated

28/78

connector_put_bytes(c, p, "Hi", 2);
connector_next_batch(c);

connector_put_bytes(c, p, "Hey", 3);
connector_sync(c, -1);

For a Native component:

Messages exchanged through ports must match 
those expressed in one batch.

👎👍
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Usage: Session behavior

Connectors realize an interaction per round, where:

1. Components consense on the interaction
2. No component’s constraints are violated

29/78

For a Protocol component:

The component’s updated state is explained by a 
path through the synchronous block without errors

primitive foo(in a, out b) {
  synchronous {
    if(fires(a)) {
      msg m = get(a);
      put(b, m);
      assert(m.length == 2);
} } }

a="Hey", b="Hey"

a=*    , b="Hi"a="Hi", b="Hi"

a="Ok", b="Ok"

👎👍



Usage: Session behavior

The idea:
Applications can express their requirements to the 
session, and then focus only on their local behavior, 
relying on the connector to keep everyone happy.

30/78
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Part 3/4:
Internals
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Part 3a/4:
Internals:
Interactions
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Interactions: Constraint Satisfaction

The session is realized by the (distributed) 
connector runtime , comprised of the session’s 
connectors.

Each round, the runtime solves a distributed 
constraint satisfaction problem
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Interactions: Constraint Satisfaction

The session is realized by the (distributed) 
connector runtime , comprised of the session’s 
connectors.

Each round, the runtime solves a distributed 
constraint satisfaction problem, where:

● The solution is an interaction & state update

34/78
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Interactions: Constraint Satisfaction

The session is realized by the (distributed) 
connector runtime , comprised of the session’s 
connectors.

Each round, the runtime solves a distributed 
constraint satisfaction problem, where:

● The solution is an interaction & state update
● The constraints are given by components

35/78
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Interactions: Constraint Satisfaction

The session is realized by the (distributed) 
connector runtime , comprised of the session’s 
connectors.

Each round, the runtime solves a distributed 
constraint satisfaction problem, where:

● The solution is an interaction & state update
● The constraints are given by components

X

ZYw≠* ∧
w[0] = ‘H’

x≠y z=*

��

�� ��
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Interactions: Constraint Satisfaction

Naïve constraint satisfaction:
Simply enumerate and check candidate solutions

w x y z
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w x y z
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Interactions: Constraint Satisfaction

Naïve constraint satisfaction:
Simply enumerate and check candidate solutions

TODO: How do we “check” candidates?

w x y z

* * * *
��

w x y z

* * * 00

w x y z

* * 00 00
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w x y z

"Hi" "Hi" * *
��

...
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Interactions: Candidate checking

A candidate is a solution IFF it “satisfies” every 
component. 
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Interactions: Candidate checking

A candidate is a solution IFF it “satisfies” every 
component. 

● Native components:
Port operations match one batch.

w x y z

"Hi" "Hi" * *
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connector_put_bytes(c, w, "Hi", 2);
connector_sync(c, -1);
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Interactions: Candidate checking

A candidate is a solution IFF it “satisfies” every 
component. 

● Native components:
Port operations match one batch.

● Protocol components:
Interaction ‘explains’ a path through the 
synchronous block, and the updated state.

w x y z

"Hi" "Hi" * *

��
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primitive foo(in x, out y, in z) {
  synchronous {
    get(x);
  }
}

connector_put_bytes(c, w, "Hi", 2);
connector_sync(c, -1);
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Interactions: Candidate checking

A candidate is a solution IFF it “satisfies” every 
component. 

● Native components:
Port operations match one batch.

● Protocol components:
Interaction ‘explains’ a path through the 
synchronous block, and the updated state.

TODO: How do we distribute this task?

w x y z

"Hi" "Hi" * *

��
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primitive foo(in x, out y, in z) {
  synchronous {
    get(x);
  }
}

connector_put_bytes(c, w, "Hi", 2);
connector_sync(c, -1);

��



Interactions: Solution Tree

We partition components over the connectors;
we say connectors manage their components. 

native

connector

foo native

connector
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Interactions: Solution Tree

We partition components over the connectors;
we say connectors manage their components. 

Component constraints are checked by its manager.

native

connector

foo native

connector
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Interactions: Solution Tree

We partition components over the connectors;
we say connectors manage their components. 

Component constraints are checked by its manager.

Candidates filter down the solution tree, whose root 
decides, and announces the solution. 

45/78
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Interactions: Solution Tree

We partition components over the connectors;
we say connectors manage their components. 

Component constraints are checked by its manager.

Candidates filter down the solution tree, whose root 
decides, and announces the solution. 

TODO: How do we reduce candidate size & number?

46/78
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Interactions: Candidate Predicates

We introduce candidate predicates, a structure that 
tersely encodes a set of candidate solutions. 
Increasingly specific predicates filter to the root.

Y

connector
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Interactions: Candidate Predicates

We introduce candidate predicates, a structure that 
tersely encodes a set of candidate solutions. 
Increasingly specific predicates filter to the root.

Intuition:
We exploit the fact that not all components 
constrain the values of a given port. 

Y

connector
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Interactions: Candidate Predicates

We introduce candidate predicates, a structure that 
tersely encodes a set of candidate solutions. 
Increasingly specific predicates filter to the root.

Intuition:
We exploit the fact that not all components 
constrain the values of a given port. 

TODO: How to explore a component’s candidates?

Y

connector
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Interactions: Speculation

Rather than enumerating  + checking candidates, we 
use available information to do these together.
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Interactions: Speculation

Rather than enumerating  + checking candidates, we 
use available information to do these together.

● Native components
Connectors are explicitly told what options 
they allow; one predicate per batch.

51/78

connector_put_bytes(c, p, "Hi", 2);
connector_get(c, g);
connector_next_batch(c);

connector_put_bytes(c, p, "Hey", 3);
connector_sync(c, -1);

p="Hi" 
g≠*

p="Hey"
g=*



Interactions: Speculation

Rather than enumerating  + checking candidates, we 
use available information to do these together.

● Native components
Connectors are explicitly told what options 
they allow; one predicate per batch.

● Protocol components
Connectors speculatively execute protocol 
components, unfolding the paths through 
their synchronous blocks without error.

52/78
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Interactions: Speculation

Rather predicates encoding relationships between 
message contents (gets very complex!) causally 
Components cooperate during speculation

53/78
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Interactions: Speculation

Rather predicates encoding relationships between 
message contents (gets very complex!) causally 
Components cooperate during speculation:
Putters inform getters of speculative messages.

The idea:
The cost of speculation scales with satisfactory 
paths through components, and not with 
satisfactory values of messages.

Bonus:
Speculation is lazy, delayed until information on 
which it depends becomes available.

54/78
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Interactions: Implementation overview

In a nutshell, interactions are realized by two, 
cooperating, distributed procedures:

1. Component speculation
The possible behaviors of components are 
simulated in an encapsulated environment.

2. Solution search & consensus
Connectors aggregate candidate solution 
information, ultimately deciding on one.
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Part 3b/4:
Internals:
Features
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Features: Distributed Timeout

The runtime makes a best effort to realize a 
satisfactory interaction, up to a timeout. 

57/78

connector_sync(c, 100); // 100ms timeout



Features: Distributed Timeout

The runtime makes a best effort to realize a 
satisfactory interaction, up to a timeout. 

A timeout event is consistently observed by all 
applications, the result of a distributed decision.

58/78

native

connector

foo native

connector
👑

timeout!

timeout!

timeout!

timeout!

connector_sync(c, 100); // 100ms timeout



Features: Distributed Timeout

The runtime makes a best effort to realize a 
satisfactory interaction, up to a timeout. 

A timeout event is consistently observed by all 
applications, the result of a distributed decision.

Benefits:

● Applications are never starved of control
● The session is always in a consistent state.
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Features: Session Transformation

As the session starts, connectors perform session 
transformation, mutating the configuration s.t.:

● The behavior observable by native 
components is unchanged

● Interactions are more efficiently realized
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Features: Session Transformation

Session transformations can, for example:
...
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Features: Session Transformation

Session transformations can, for example:
Remove idempotent components

on localhost

before
after

sync sync

sync
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Features: Session Transformation

Session transformations can, for example:
Shorten transport routes

before
after

on localhoston ~1ms ping network
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Features: Session Transformation

Session transformations can, for example:
Reduce network traffic

before
after

filter

on ~1ms ping network
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Features: Session Transformation

Session transformations can, for example:
Simplify primitive clusters

before
after

xrouter merger

sync
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Features: Session Transformation

Session transformations can, for example:
Replace composites with primitives

primitive sequencer3(out a, out b, out c) {
    int i = 0;
    while(true) synchronous {
        out to = a;
        if     (i==1) to = b;
        else if(i==2) to = c;
        if(fires(to)) {
            put(to, create(0));
            i = (i + 1)%3;
        }
    }
}

66/78

on localhost



Part 4/4:
Future
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Future: Improving Flexibility

68/78

There are many promising directions for future work 
that aims to allow the expression of new protocols, 
or the creation of new kinds of sessions.

1. relax synchronicity to atomicity
2. tree reconfiguration
3. N messages per port per round
4. decouple speculation from decision



Future: Improving Flexibility

1. relax synchronicity to atomicity
2. tree reconfiguration
3. N messages per port per round
4. decouple speculation from decision

Consider interactions that advance the state of 
protocol components any number of synchronous 
atomic blocks (currently 1). 

Essentially, takes power away from components 
and gives it to the runtime.

Advantages:
1. Some component slow ⇏ session slow
2. Components become more flexible

TODO: Need a new system (e.g. priority) to avoid starvation

69/78

primitive foo(in a, in b) {
    synchronous { get(a); }
    synchronous { get(b); }
}



Future: Improving Flexibility

1. relax synchronicity to atomicity
2. tree reconfiguration
3. N messages per port per round
4. decouple speculation from decision

Solution tree reconfiguration → new capabilities:

1. Dynamic session fusing, splitting
2. Unify setup and communication phases
3. Robustness to control channel breakdown

👑 👑
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Future: Improving Flexibility

1. relax synchronicity to atomicity
2. tree reconfiguration
3. N messages per port per round
4. decouple speculation from decision

Currently, components are permitted to send up to 1 
message per round. E.g. this results in an error:

Future:
Rework implementation, such that sequences of 
puts, gets are allowed per port, per round. Rework 
predicates to reason about msg index bounds.

connector_put_bytes(c, p, "msg 0", 5);
connector_put_bytes(c, p, "msg 1", 5);
connector_sync(c, -1);

71/78



Future: Improving Flexibility

1. relax synchronicity to atomicity
2. tree reconfiguration
3. N messages per port per round
4. decouple speculation from decision

Interactions are found by performing 1-round 
lookahead, using speculative execution.

Example: This may fail!

Future:
Decouple speculation and decision, such that 
decisions are made using arbitrary lookahead.

72/78

primitive foo(out a) {
  boolean r0_get;
  synchronous { 
    r0_get = fires(a);
    if(r0_get) get(a);
  }
  synchronous { assert(r0_get); }
}



Future: Improving Performance

During development & benchmarking, we identified 
opportunities for optimizations and restrictions to 
make connectors more efficient:

1. Rule-based session transformation
2. Session-wide message aliasing
3. Kernel implementation
4. Control algorithms over UDP/IP
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Future: Improving Performance

Session transformation is very limited; no support 
for reasoning about user-defined protocols.

Future:
Session transformation that searches for patterns, 
based on components’ properties ⇒ 
Transformations more robust, and can work on 
user-defined protocols.

Example:
Patch graph rewriting (Overbeek & Endrullis)
for robust, rule-based session transformations.

1. Rule-based session transformation
2. Session-wide message aliasing
3. Kernel implementation
4. Control algorithms over UDP/IP
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Future: Improving Performance

1. Rule-based session transformation
2. Session-wide message aliasing
3. Kernel implementation
4. Control algorithms over UDP/IP

As speculation ⇒ message replication, the runtime 
has a system for safely aliasing message contents.

As a bonus, messages are cheaply aliased between 
components with the same manager (connector).

Future:
Decouple message identifiers from message 
contents. Components exchange and replicate 
message identifiers primarily.

E.g. Approach: Id(m) = Hash(Contents(m)). 
Communicate Id and Hash separately, and have 
connectors populate a local Id⇒Contents store.
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Future: Improving Performance

1. Rule-based session transformation
2. Session-wide message aliasing
3. Kernel implementation
4. Control algorithms over UDP/IP

Connectors are implemented in user space. 
Boundary to OS is currently  between connectors & 
transport layer.

Future: Implement connector runtime in the kernel. 

Benefits:
1. Faster session ⇔ transport interface
2. OS read-only pages for message contents
3. Other OS work can access protocols

76/78



Currently, distributed control messages are 
transported over TCP. The implementation is 
simpler as it can rely on TCP for ordering, delivery.

Often, TCP’s guarantees are unnecessarily strong.

Future:
Implement control algorithms atop UDP or IP, 
providing ordering, delivery only as needed.

New control algorithms can be protocol-aware. 
Example: retransmit `promising’ speculative 
messages more frequently than others.

Future: Improving Performance

1. Rule-based session transformation
2. Session-wide message aliasing
3. Kernel implementation
4. Control algorithms over UDP/IP
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Future: Improving Flexibility

1. relax synchronicity to atomicity
2. tree reconfiguration
3. N messages per port per round
4. decouple speculation from decision
5. parametric port types

Messages are always byte sequences (~IP packet)

Future:
Make channels,ports generic over a message type. 
PDL becomes simpler and safer.
E.g., in type becomes in<[unsigned byte]>.

primitive foo(out<int> o) {
  synchronous {
    put(o, 1234);
  }
}
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To drive speculation, two operations occur often:

1. Given predicate P, visit component branches 
whose predicates are consistent with P.

2. Modify the predicate associated with a 
component’s speculative branch.

Idea: Specialize the storage of branches (currently, 
HashMap) to exploit predicates’ structure.

Future: Improving Performance

1. Rule-based session transformation
2. Session-wide message aliasing
3. Kernel implementation
4. Control algorithms over UDP/IP
5. Optimized component storage

Va
Vb

Vc
0

1

0

1

0

1
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Usage: UDP Interoperability

To facilitate partial adoption of connectors, a 
special UDP Mediator component translates 
between UDP network messages and user payloads, 
acting much like a native component.

Connector * c = connector_new(config);
PortId p, g;
FfiSocketAddr local = {{127, 0, 0, 1}, 7700};
FfiSocketAddr peer  = {{127, 0, 0, 1}, 7701};

connector_add_udp_mediator_component(
  c, &p, &g, local, peer);

connector_connect(c, -1);

native UDP
mediator

p ?
g ?
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(1) What kinds of benchmarks would convince someone to use 
connectors instead of sockets?

We are concerned with two things when comparing 
applications implemented using sockets/connectors: (1) 
what can we express, and how safely, easily, and (2) how 
efficiently does it run?
By comparing the same applications written using sockets 
and connectors, we could focus on these two aspects; the 
goal is to show a high gain in expressivity, and low loss of 
performance (ideally, zero or even negative!). Later, we want 
to recreate work done for Reo, which resulted in even better 
runtime performance using Reo. The idea is that, using 
protocols, the session can perform optimizations that the 
application could never (safely) do! Eg: slide 64.

Q&A: Part 1/4

(2) Are there properties like privacy that can be formalized now 
and not with sockets?

We didn’t investigate privacy very deeply. We expect such 
properties aren’t impossible to formalize either way, but are 
perhaps more naturally represented using connectors. For 
example: the runtime reasons about ‘locality’ of components; 
we could envision a scheme where users can enforce that the 
connector will keep an annotated component local to the 
user’s machine (perhaps, because it does sensitive work).
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(3) You show session transformations that group multiple 
components together on a connector. Can you do the 
opposite? Can you ‘spread’ a single primitive over the network?

Primitive components are indivisible; however, the work that a 
primitive performs is often not indivisible. Using a session 
transformation, we can replace a single primitive component 
with a cluster (which, together, does the same work), and 
spread some of these new primitives out over the network.

Q&A: Part 2/4

(4) How do you avoid side-effects when speculatively 
executing protocol components?

During speculative execution, components can indeed modify 
their local variables. Implemented incorrectly, this could easily 
result in one branch’s actions leaking to another speculative 
branch. However, when branching, the local variable stores of 
branches are forked also, such that each branch has its own 
isolated workspace.
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(5) Can components store large values in their variables? Does 
branching during speculation not incur too much cost, as a 
result of these large values being replicated?

Components mostly store small things like integers and 
bytes, but they can indeed store messages, which can be very 
large. To minimize the cost of replicating messages, the 
implementation uses a copy-on-write pattern, which allows 
identical messages to be safely aliased between 
components. Messages are only replicated upon their 
modification, if they have 2+ aliases. Future work extends this 
aliasing even further (slide 75).

(6) How do connectors prevent “starving applications of 
control” (slide 59) if one component can causes all to time 
out? Can malicious components repeatedly use timeout=0?

Currently, indeed, a malicious component can prevent the 
session making progress by killing the search for interactions 
before it has a chance to start. However, each time this 
happens, all applications regain control, and have a chance to 
change their behavior, including aborting the session.

Currently, each component does indeed have a great 
influence on the progress of the session, which is quite 
restrictive. This motivates some of the future work; for 
example, slide 69 demonstrates a nice way of mitigating the 
effects of malicious components.

Q&A: Part 3/4
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(7) Does PDL have formal semantics? How does it differ from 
the distributed constraint solving?

We don’t have formal semantics yet (28 Oct 2020). This is 
indeed planned. The idea was for PDL to inherit much of this 
kind of work done for the Reo language, by PDL differing from 
Reo as little as possible.

Q&A: Part 4/4
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