
Overview of the Reowolf Project

Christopher Esterhuyse

1/78

Contents

1. Context
a. Problem
b. Approach

2. Usage
a. Connectors & sessions
b. Setup
c. Communication
d. Protocols
e. Connectors + protocols
f. Session behavior

3. Internals
a. Interactions

i. Constraint satisfaction
ii. Candidate checking
iii. Solution tree
iv. Candidate predicates
v. Speculation

vi. Implementation overview
b. Features

i. Distributed timeout
ii. Session transformation

4. Future
a. Improving flexibility
b. Improving performance

2/78

Part 1/4:
Context

3/78

Context: Problem

State of socket programming

● BSD-style sockets are very limited
○ 2-party communication
○ Limited configurability

● High-level logic → low-level implementation
○ Error prone for humans
○ Over-specifies original requirements
○ Original intention is lost

● Middleware is ignorant of the protocol
○ Uninformed resource optimization
○ Cannot help preserve requirements

protocol

4/78

Context: Approach

Use explicit protocols as the vehicle for the user’s
requirements, preserved all the way down to the
infrastructure

Project deliverables:

1. Protocol Description Language (‘PDL’)
2. Implementation of connectors, configurable

with protocols expressed in PDL

protocol

5/78

Part 2/4:
Usage

6/78

Usage: Connectors & Sessions

A session is a particular run of a system of
communicating components, communicating via
the exchange of messages over time.

C0 C1

C3C2

7/78

X

Y

Z

"Hi"

"Hi"

Usage: Connectors & Sessions

A session is a particular run of a system of
communicating components, communicating via
the exchange of messages over time.

We discretize time into a sequence of interactions.
C0 C1

C3C2

X Y Z

0 "Hi" "Hi" *

1 * * *

8/78

X

Y

Z

"Hi"

"Hi"

at round 0:

Usage: Connectors & Sessions

A session is a particular run of a system of
communicating components, communicating via
the exchange of messages over time.

We discretize time into a sequence of interactions.

Components act on ports (~channel ends), so we
often reason at this granularity. Components only
access their own ports.

C0 C1

C3C2

XiXo

ZoZi

Yi

Yo

9/78

Xo Xi Yo Yi Zo Zi

0 "Hi" "Hi" "Hi" "Hi" * *

1 * * * * * *

"Hi"

"Hi"

at round 0:

Usage: Connectors & Sessions

Connectors allow an application to participate in a
session, adopting the role of a native (component).

native

the session

connector

10/78

Usage: Connectors & Sessions

Connectors allow an application to participate in a
session, adopting the role of a native (component).

The session starts after a setup phase, in which the
application refines the session configuration around
their native component.

native

the session

connector

11/78

the session

Usage: Setup

Connectors allow an application to participate in a
session, adopting the role of a native (component).

The session starts after a setup phase, in which the
application refines the session configuration around
their native component. They can:

1. Create channels, keeping both ports

native

connector

a
b

12/78

the session

Usage: Setup

Connectors allow an application to participate in a
session, adopting the role of a native (component).

The session starts after a setup phase, in which the
application refines the session configuration around
their native component. They can:

1. Create channels, keeping both ports
2. Cooperate with a peer to create a channel native

connector

a
b

? ?

c

@192
.168

.1.4

:800
0

13/78

Usage: Setup

Connectors allow an application to participate in a
session, adopting the role of a native (component).

The session starts after a setup phase, in which the
application refines the session configuration around
their native component. They can:

1. Create channels, keeping both ports
2. Cooperate with a peer to create a channel

All connectors transition setup→communication
together, when they complete connect().

14/78

the session native

connector

a
b

native d

cconnector

e

Usage: Setup

Example C code of setup phase:

Connector * c = connector_new(config);

PortId x, y, z;
connector_add_port_pair(c, &x, &y);
connector_add_net_port(c, &z,
 (FfiSocketAddr) {{127, 0, 0, 1}, 7700},
 Polarity_Putter,
 EndpointPolarity_Active);

connector_connect(c, -1);

native

connector

y
zx

?

@127.0.0.1
:7700

15/78

Ignore this config for now

Usage: Communication

Communication proceeds in rounds (~interactions),
during which every port may send or receive up to 1
message. Components may work on local data
`between’ rounds.

The C API renders this as a builder pattern, where
the application synchronizes local data with that of
the session in rounds. In steps:

1. Prepare for the next synchronization
2. Synchronize message data
3. Reflect on the result

connector_put_bytes(c, x, "Hi", 2);
connector_get(c, y);
connector_put_bytes(c, z, "Hey", 3);

connector_sync(c, -1);

size_t len;
const unsigned char * msg =
 connector_gotten_bytes(c, x, &len);

16/78

Usage: Communication

Components can express nondeterministic
choice, to be decided arbitrarily at runtime.

For native components: group messages into
indexed ‘batches’; exactly one batch will succeed.

connector_put_bytes(c, x, "Hey", 3);
connector_get(c, y);

connector_next_batch(c);

connector_put_bytes(c, x, "Hi", 2);

int code = connector_sync(c, -1);

switch(code) {
 case 0: /* */ break;
 case 1: /* */ break;
 default: /* (error case) */ break;
}

Batch
1

Batch
0

17/78

Usage: Communication

Components can express nondeterministic
choice, to be decided arbitrarily at runtime.

For native components: group messages into
indexed ‘batches’; exactly one batch will succeed.

Why? Component can be flexible to other
components’ behavior without knowing it.

connector_put_bytes(c, x, "Hey", 3);
connector_get(c, y);

connector_next_batch(c);

connector_put_bytes(c, x, "Hi", 2);

int code = connector_sync(c, -1);

switch(code) {
 case 0: /* */ break;
 case 1: /* */ break;
 default: /* (error case) */ break;
}

Batch
1

Batch
0

18/78

Usage: Communication

Example 1-round session

Connector * c = connector_new(config);
PortId p;
connector_add_net_port(c, &p, addr,
 Polarity_Putter, EndpointPolarity_Active);
connector_connect(c, -1);

connector_put_bytes(c, p, "Hi", 2);
connector_next_batch(c);
int err = connector_sync(c, 1000);
if(code == 1) {
 // my message was sent!
}

Connector * c = connector_new(config);
PortId g;
connector_add_net_port(c, &g, addr,
 Polarity_Getter, EndpointPolarity_Passive);
connector_connect(c, -1);

connector_get(c, g);
connector_sync(c, 1000);
size_t len;
const char msg =
 connector_gotten_bytes(c, g, &len);
printf("%.*s\n", (int) len, msg);

19/78(this native offers the message: "Hi") (this native demands some message)

Usage: Protocols

Protocol Description Language (‘PDL’) defines
protocol components, and aims to feel familiar to C
programmers. primitive foo(in a, in b, out c) {

 int counter = 0;
}

20/78

Usage: Protocols

Protocol Description Language (‘PDL’) defines
protocol components, and aims to feel familiar to C
programmers.

Primitive components can participate in rounds,
putting or getting messages through ports.

primitive foo(in a, in b, out c) {
 int counter = 0;
 synchronous {
 msg ma = get(a);
 }
 synchronous {
 msg mb = get(b);
 }
}

21/78

Usage: Protocols

Protocol Description Language (‘PDL’) defines
protocol components, and aims to feel familiar to C
programmers.

Primitive components can participate in rounds,
putting or getting messages through ports.

Unlike natives, protocol components can introduce
causal dependencies between actions.

primitive foo(in a, in b, out c) {
 int counter = 0;
 synchronous {
 msg ma = get(a);
 }
 synchronous {
 msg mb = get(b);
 put(c, mb);
 }
}

22/78

Usage: Protocols

Protocol Description Language (‘PDL’) defines
protocol components, and aims to feel familiar to C
programmers.

Primitive components can participate in rounds,
putting or getting messages through ports.

Unlike natives, protocol components can introduce
causal dependencies between actions.

They can express nondeterminism by accessing
values decided at runtime.

primitive foo(in a, in b, out c) {
 int counter = 0;
 synchronous {
 msg ma = get(a);
 }
 synchronous {
 if(fires(b) && fires(c)) {
 msg mb = get(b);
 put(c, mb);
 }
 }
}

23/78

Usage: Protocols

Composite components can create new port pairs,
but cannot communicate.

composite foo(in a) {
 channel b -> c;
}

24/78

bar baz

Usage: Protocols

composite foo(in a) {
 channel b -> c;
 new bar(a, b);
 new baz(c);
}
primitive bar(in a, out b) {
 /* omitted */
}
composite baz(in c) {
 /* omitted */
}

Composite components can create new port pairs,
but cannot communicate. They can also create new
components, and pass them their ports.

foo
a

foo
c

a
b

before
after ?

?

25/78

Usage: Connectors + Protocols

Like composites, natives can create new protocol
components, effectively delegating work to the
connector itself.

unsigned char pdl = "primitive foo(in g){}";
Arc_ProtocolDescription config =
 protocol_description_parse(pdl, sizeof(pdl)-1);
Connector * c = connector_new(config);

PortId p, g;
connector_add_port_pair(c, &p, &g);
connector_add_component(c, "foo", 3, &g, 1);

connector_connect(c, -1);

foo

native

g
b

native

before
after

gb
26/78

Usage: Session behavior

Connectors realize an interaction per round, where:

1. Components consense on the interaction
2. No component’s constraints are violated

27/78

��

foonative yx

x="Hi" y="Hi"

��x="Hi" y="Hey"

Usage: Session behavior

Connectors realize an interaction per round, where:

1. Components consense on the interaction
2. No component’s constraints are violated

28/78

connector_put_bytes(c, p, "Hi", 2);
connector_next_batch(c);

connector_put_bytes(c, p, "Hey", 3);
connector_sync(c, -1);

For a Native component:

Messages exchanged through ports must match
those expressed in one batch.

👎👍

p="Hi"

p="Hey"

p="Hello"

p=*

Usage: Session behavior

Connectors realize an interaction per round, where:

1. Components consense on the interaction
2. No component’s constraints are violated

29/78

For a Protocol component:

The component’s updated state is explained by a
path through the synchronous block without errors

primitive foo(in a, out b) {
 synchronous {
 if(fires(a)) {
 msg m = get(a);
 put(b, m);
 assert(m.length == 2);
} } }

a="Hey", b="Hey"

a=* , b="Hi"a="Hi", b="Hi"

a="Ok", b="Ok"

👎👍

Usage: Session behavior

The idea:
Applications can express their requirements to the
session, and then focus only on their local behavior,
relying on the connector to keep everyone happy.

30/78

native

filter
?

Part 3/4:
Internals

31/78

Part 3a/4:
Internals:
Interactions

32/78

Interactions: Constraint Satisfaction

The session is realized by the (distributed)
connector runtime , comprised of the session’s
connectors.

Each round, the runtime solves a distributed
constraint satisfaction problem

33/78

Interactions: Constraint Satisfaction

The session is realized by the (distributed)
connector runtime , comprised of the session’s
connectors.

Each round, the runtime solves a distributed
constraint satisfaction problem, where:

● The solution is an interaction & state update

34/78

w x y z

? ? ? ?

Interactions: Constraint Satisfaction

The session is realized by the (distributed)
connector runtime , comprised of the session’s
connectors.

Each round, the runtime solves a distributed
constraint satisfaction problem, where:

● The solution is an interaction & state update
● The constraints are given by components

35/78

X

ZYw≠* ∧
w[0] = ‘H’

x≠y z=*

w x y z

? ? ? ?

Interactions: Constraint Satisfaction

The session is realized by the (distributed)
connector runtime , comprised of the session’s
connectors.

Each round, the runtime solves a distributed
constraint satisfaction problem, where:

● The solution is an interaction & state update
● The constraints are given by components

X

ZYw≠* ∧
w[0] = ‘H’

x≠y z=*

��

�� ��

36/78

w x y z

"Hi" "Hi" * *

Interactions: Constraint Satisfaction

Naïve constraint satisfaction:
Simply enumerate and check candidate solutions

w x y z

* * * *
��

w x y z

* * * 00

w x y z

* * 00 00

��

��

w x y z

"Hi" "Hi" * *
��

...

37/78

Interactions: Constraint Satisfaction

Naïve constraint satisfaction:
Simply enumerate and check candidate solutions

TODO: How do we “check” candidates?

w x y z

* * * *
��

w x y z

* * * 00

w x y z

* * 00 00

��

��

w x y z

"Hi" "Hi" * *
��

...

38/78

Interactions: Candidate checking

A candidate is a solution IFF it “satisfies” every
component.

39/78

Interactions: Candidate checking

A candidate is a solution IFF it “satisfies” every
component.

● Native components:
Port operations match one batch.

w x y z

"Hi" "Hi" * *

40/78

connector_put_bytes(c, w, "Hi", 2);
connector_sync(c, -1);

��

Interactions: Candidate checking

A candidate is a solution IFF it “satisfies” every
component.

● Native components:
Port operations match one batch.

● Protocol components:
Interaction ‘explains’ a path through the
synchronous block, and the updated state.

w x y z

"Hi" "Hi" * *

��

41/78

primitive foo(in x, out y, in z) {
 synchronous {
 get(x);
 }
}

connector_put_bytes(c, w, "Hi", 2);
connector_sync(c, -1);

��

Interactions: Candidate checking

A candidate is a solution IFF it “satisfies” every
component.

● Native components:
Port operations match one batch.

● Protocol components:
Interaction ‘explains’ a path through the
synchronous block, and the updated state.

TODO: How do we distribute this task?

w x y z

"Hi" "Hi" * *

��

42/78

primitive foo(in x, out y, in z) {
 synchronous {
 get(x);
 }
}

connector_put_bytes(c, w, "Hi", 2);
connector_sync(c, -1);

��

Interactions: Solution Tree

We partition components over the connectors;
we say connectors manage their components.

native

connector

foo native

connector

43/78

Interactions: Solution Tree

We partition components over the connectors;
we say connectors manage their components.

Component constraints are checked by its manager.

native

connector

foo native

connector

44/78

w x y z

"Hi" "Hi" * *

w x y z

"Hi" "Hi" * *

Interactions: Solution Tree

We partition components over the connectors;
we say connectors manage their components.

Component constraints are checked by its manager.

Candidates filter down the solution tree, whose root
decides, and announces the solution.

45/78

native

connector

foo native

connector
👑

{a,b,c} {a,c} {a,c}

{a,c}

c!

Interactions: Solution Tree

We partition components over the connectors;
we say connectors manage their components.

Component constraints are checked by its manager.

Candidates filter down the solution tree, whose root
decides, and announces the solution.

TODO: How do we reduce candidate size & number?

46/78

native

connector

foo native

connector
👑

{a,b,c} {a,c} {a,c}

{a,c}

c!

!

Interactions: Candidate Predicates

We introduce candidate predicates, a structure that
tersely encodes a set of candidate solutions.
Increasingly specific predicates filter to the root.

Y

connector

47/78

👑

X

connector

p q

p="Hi"

p="Hi" q="Hi"

p q

"Hi" "Hi"

!

Interactions: Candidate Predicates

We introduce candidate predicates, a structure that
tersely encodes a set of candidate solutions.
Increasingly specific predicates filter to the root.

Intuition:
We exploit the fact that not all components
constrain the values of a given port.

Y

connector

48/78

👑

X

connector

p q

p="Hi"

p="Hi" q="Hi"

p q

"Hi" "Hi"

!

Interactions: Candidate Predicates

We introduce candidate predicates, a structure that
tersely encodes a set of candidate solutions.
Increasingly specific predicates filter to the root.

Intuition:
We exploit the fact that not all components
constrain the values of a given port.

TODO: How to explore a component’s candidates?

Y

connector

49/78

👑

X

connector

p q

p="Hi"

p="Hi" q="Hi"

p q

"Hi" "Hi"

Interactions: Speculation

Rather than enumerating + checking candidates, we
use available information to do these together.

50/78

Interactions: Speculation

Rather than enumerating + checking candidates, we
use available information to do these together.

● Native components
Connectors are explicitly told what options
they allow; one predicate per batch.

51/78

connector_put_bytes(c, p, "Hi", 2);
connector_get(c, g);
connector_next_batch(c);

connector_put_bytes(c, p, "Hey", 3);
connector_sync(c, -1);

p="Hi"
g≠*

p="Hey"
g=*

Interactions: Speculation

Rather than enumerating + checking candidates, we
use available information to do these together.

● Native components
Connectors are explicitly told what options
they allow; one predicate per batch.

● Protocol components
Connectors speculatively execute protocol
components, unfolding the paths through
their synchronous blocks without error.

52/78

p=""p=*

Interactions: Speculation

Rather predicates encoding relationships between
message contents (gets very complex!) causally
Components cooperate during speculation

53/78

p g

p=""p=* p=?p=*

Interactions: Speculation

Rather predicates encoding relationships between
message contents (gets very complex!) causally
Components cooperate during speculation:
Putters inform getters of speculative messages.

The idea:
The cost of speculation scales with satisfactory
paths through components, and not with
satisfactory values of messages.

Bonus:
Speculation is lazy, delayed until information on
which it depends becomes available.

54/78

p g

p=""p=* p=""p=*

Interactions: Implementation overview

In a nutshell, interactions are realized by two,
cooperating, distributed procedures:

1. Component speculation
The possible behaviors of components are
simulated in an encapsulated environment.

2. Solution search & consensus
Connectors aggregate candidate solution
information, ultimately deciding on one.

55/78

Part 3b/4:
Internals:
Features

56/78

Features: Distributed Timeout

The runtime makes a best effort to realize a
satisfactory interaction, up to a timeout.

57/78

connector_sync(c, 100); // 100ms timeout

Features: Distributed Timeout

The runtime makes a best effort to realize a
satisfactory interaction, up to a timeout.

A timeout event is consistently observed by all
applications, the result of a distributed decision.

58/78

native

connector

foo native

connector
👑

timeout!

timeout!

timeout!

timeout!

connector_sync(c, 100); // 100ms timeout

Features: Distributed Timeout

The runtime makes a best effort to realize a
satisfactory interaction, up to a timeout.

A timeout event is consistently observed by all
applications, the result of a distributed decision.

Benefits:

● Applications are never starved of control
● The session is always in a consistent state.

59/78

native

connector

foo native

connector
👑

timeout!

timeout!

timeout!

timeout!

connector_sync(c, 100); // 100ms timeout

Features: Session Transformation

As the session starts, connectors perform session
transformation, mutating the configuration s.t.:

● The behavior observable by native
components is unchanged

● Interactions are more efficiently realized

60/78

Features: Session Transformation

Session transformations can, for example:
...

61/78

Features: Session Transformation

Session transformations can, for example:
Remove idempotent components

on localhost

before
after

sync sync

sync

62/78

Features: Session Transformation

Session transformations can, for example:
Shorten transport routes

before
after

on localhoston ~1ms ping network

63/78

Features: Session Transformation

Session transformations can, for example:
Reduce network traffic

before
after

filter

on ~1ms ping network

64/78

filter

Features: Session Transformation

Session transformations can, for example:
Simplify primitive clusters

before
after

xrouter merger

sync

65/78

on localhost

Features: Session Transformation

Session transformations can, for example:
Replace composites with primitives

primitive sequencer3(out a, out b, out c) {
 int i = 0;
 while(true) synchronous {
 out to = a;
 if (i==1) to = b;
 else if(i==2) to = c;
 if(fires(to)) {
 put(to, create(0));
 i = (i + 1)%3;
 }
 }
}

66/78

on localhost

Part 4/4:
Future

67/78

Future: Improving Flexibility

68/78

There are many promising directions for future work
that aims to allow the expression of new protocols,
or the creation of new kinds of sessions.

1. relax synchronicity to atomicity
2. tree reconfiguration
3. N messages per port per round
4. decouple speculation from decision

Future: Improving Flexibility

1. relax synchronicity to atomicity
2. tree reconfiguration
3. N messages per port per round
4. decouple speculation from decision

Consider interactions that advance the state of
protocol components any number of synchronous
atomic blocks (currently 1).

Essentially, takes power away from components
and gives it to the runtime.

Advantages:
1. Some component slow ⇏ session slow
2. Components become more flexible

TODO: Need a new system (e.g. priority) to avoid starvation

69/78

primitive foo(in a, in b) {
 synchronous { get(a); }
 synchronous { get(b); }
}

Future: Improving Flexibility

1. relax synchronicity to atomicity
2. tree reconfiguration
3. N messages per port per round
4. decouple speculation from decision

Solution tree reconfiguration → new capabilities:

1. Dynamic session fusing, splitting
2. Unify setup and communication phases
3. Robustness to control channel breakdown

👑 👑

70/78

Bye
👑

Future: Improving Flexibility

1. relax synchronicity to atomicity
2. tree reconfiguration
3. N messages per port per round
4. decouple speculation from decision

Currently, components are permitted to send up to 1
message per round. E.g. this results in an error:

Future:
Rework implementation, such that sequences of
puts, gets are allowed per port, per round. Rework
predicates to reason about msg index bounds.

connector_put_bytes(c, p, "msg 0", 5);
connector_put_bytes(c, p, "msg 1", 5);
connector_sync(c, -1);

71/78

Future: Improving Flexibility

1. relax synchronicity to atomicity
2. tree reconfiguration
3. N messages per port per round
4. decouple speculation from decision

Interactions are found by performing 1-round
lookahead, using speculative execution.

Example: This may fail!

Future:
Decouple speculation and decision, such that
decisions are made using arbitrary lookahead.

72/78

primitive foo(out a) {
 boolean r0_get;
 synchronous {
 r0_get = fires(a);
 if(r0_get) get(a);
 }
 synchronous { assert(r0_get); }
}

Future: Improving Performance

During development & benchmarking, we identified
opportunities for optimizations and restrictions to
make connectors more efficient:

1. Rule-based session transformation
2. Session-wide message aliasing
3. Kernel implementation
4. Control algorithms over UDP/IP

73/78

Future: Improving Performance

Session transformation is very limited; no support
for reasoning about user-defined protocols.

Future:
Session transformation that searches for patterns,
based on components’ properties ⇒
Transformations more robust, and can work on
user-defined protocols.

Example:
Patch graph rewriting (Overbeek & Endrullis)
for robust, rule-based session transformations.

1. Rule-based session transformation
2. Session-wide message aliasing
3. Kernel implementation
4. Control algorithms over UDP/IP

74/78

Future: Improving Performance

1. Rule-based session transformation
2. Session-wide message aliasing
3. Kernel implementation
4. Control algorithms over UDP/IP

As speculation ⇒ message replication, the runtime
has a system for safely aliasing message contents.

As a bonus, messages are cheaply aliased between
components with the same manager (connector).

Future:
Decouple message identifiers from message
contents. Components exchange and replicate
message identifiers primarily.

E.g. Approach: Id(m) = Hash(Contents(m)).
Communicate Id and Hash separately, and have
connectors populate a local Id⇒Contents store.

75/78

Future: Improving Performance

1. Rule-based session transformation
2. Session-wide message aliasing
3. Kernel implementation
4. Control algorithms over UDP/IP

Connectors are implemented in user space.
Boundary to OS is currently between connectors &
transport layer.

Future: Implement connector runtime in the kernel.

Benefits:
1. Faster session ⇔ transport interface
2. OS read-only pages for message contents
3. Other OS work can access protocols

76/78

Currently, distributed control messages are
transported over TCP. The implementation is
simpler as it can rely on TCP for ordering, delivery.

Often, TCP’s guarantees are unnecessarily strong.

Future:
Implement control algorithms atop UDP or IP,
providing ordering, delivery only as needed.

New control algorithms can be protocol-aware.
Example: retransmit `promising’ speculative
messages more frequently than others.

Future: Improving Performance

1. Rule-based session transformation
2. Session-wide message aliasing
3. Kernel implementation
4. Control algorithms over UDP/IP

77/78

78/78
END COLLAGE SLIDE JUMP to contents slide JUMP to Q&A

protocol

native

the session

connector

?

c

@192
.168

.1.4

:800
0

filter

!
p q

"Hi" "Hi"

ZY

x≠y z=*

�� ��

w x y z

"Hi" "Hi" * *

connector connector
👑{a,c}

EXTRA

79/76

Future: Improving Flexibility

1. relax synchronicity to atomicity
2. tree reconfiguration
3. N messages per port per round
4. decouple speculation from decision
5. parametric port types

Messages are always byte sequences (~IP packet)

Future:
Make channels,ports generic over a message type.
PDL becomes simpler and safer.
E.g., in type becomes in<[unsigned byte]>.

primitive foo(out<int> o) {
 synchronous {
 put(o, 1234);
 }
}

80/78

To drive speculation, two operations occur often:

1. Given predicate P, visit component branches
whose predicates are consistent with P.

2. Modify the predicate associated with a
component’s speculative branch.

Idea: Specialize the storage of branches (currently,
HashMap) to exploit predicates’ structure.

Future: Improving Performance

1. Rule-based session transformation
2. Session-wide message aliasing
3. Kernel implementation
4. Control algorithms over UDP/IP
5. Optimized component storage

Va
Vb

Vc
0

1

0

1

0

1

81/78

Usage: UDP Interoperability

To facilitate partial adoption of connectors, a
special UDP Mediator component translates
between UDP network messages and user payloads,
acting much like a native component.

Connector * c = connector_new(config);
PortId p, g;
FfiSocketAddr local = {{127, 0, 0, 1}, 7700};
FfiSocketAddr peer = {{127, 0, 0, 1}, 7701};

connector_add_udp_mediator_component(
 c, &p, &g, local, peer);

connector_connect(c, -1);

native UDP
mediator

p ?
g ?

82/78

(1) What kinds of benchmarks would convince someone to use
connectors instead of sockets?

We are concerned with two things when comparing
applications implemented using sockets/connectors: (1)
what can we express, and how safely, easily, and (2) how
efficiently does it run?
By comparing the same applications written using sockets
and connectors, we could focus on these two aspects; the
goal is to show a high gain in expressivity, and low loss of
performance (ideally, zero or even negative!). Later, we want
to recreate work done for Reo, which resulted in even better
runtime performance using Reo. The idea is that, using
protocols, the session can perform optimizations that the
application could never (safely) do! Eg: slide 64.

Q&A: Part 1/4

(2) Are there properties like privacy that can be formalized now
and not with sockets?

We didn’t investigate privacy very deeply. We expect such
properties aren’t impossible to formalize either way, but are
perhaps more naturally represented using connectors. For
example: the runtime reasons about ‘locality’ of components;
we could envision a scheme where users can enforce that the
connector will keep an annotated component local to the
user’s machine (perhaps, because it does sensitive work).

83/78

(3) You show session transformations that group multiple
components together on a connector. Can you do the
opposite? Can you ‘spread’ a single primitive over the network?

Primitive components are indivisible; however, the work that a
primitive performs is often not indivisible. Using a session
transformation, we can replace a single primitive component
with a cluster (which, together, does the same work), and
spread some of these new primitives out over the network.

Q&A: Part 2/4

(4) How do you avoid side-effects when speculatively
executing protocol components?

During speculative execution, components can indeed modify
their local variables. Implemented incorrectly, this could easily
result in one branch’s actions leaking to another speculative
branch. However, when branching, the local variable stores of
branches are forked also, such that each branch has its own
isolated workspace.

84/78

(5) Can components store large values in their variables? Does
branching during speculation not incur too much cost, as a
result of these large values being replicated?

Components mostly store small things like integers and
bytes, but they can indeed store messages, which can be very
large. To minimize the cost of replicating messages, the
implementation uses a copy-on-write pattern, which allows
identical messages to be safely aliased between
components. Messages are only replicated upon their
modification, if they have 2+ aliases. Future work extends this
aliasing even further (slide 75).

(6) How do connectors prevent “starving applications of
control” (slide 59) if one component can causes all to time
out? Can malicious components repeatedly use timeout=0?

Currently, indeed, a malicious component can prevent the
session making progress by killing the search for interactions
before it has a chance to start. However, each time this
happens, all applications regain control, and have a chance to
change their behavior, including aborting the session.

Currently, each component does indeed have a great
influence on the progress of the session, which is quite
restrictive. This motivates some of the future work; for
example, slide 69 demonstrates a nice way of mitigating the
effects of malicious components.

Q&A: Part 3/4

85/78

(7) Does PDL have formal semantics? How does it differ from
the distributed constraint solving?

We don’t have formal semantics yet (28 Oct 2020). This is
indeed planned. The idea was for PDL to inherit much of this
kind of work done for the Reo language, by PDL differing from
Reo as little as possible.

Q&A: Part 4/4

86/78

http://reo.project.cwi.nl/

